1. Consider the differential equation $\frac{d y}{d x}=\frac{x y^{2}}{2}$. Let $\mathrm{y}=\mathrm{f}(\mathrm{x})$ be the particular solution to this differential equation with the initial condition $\mathrm{f}(-1)=2$.
a) On the axis provided, sketch a slope field for the given differential equation at the twelve points indicated

b) Find the solution $y=f(x)$ to the given differential equation with the initial condition $f(-1)=2$.

Rewrite the integral in terms of u and du. Then evaluate the integral.
2. $\int_{\pi / 4}^{\pi / 2} \frac{\cos x}{(\sin x)^{3}} d x \quad \mathrm{u}=\sin \mathrm{x} \quad$ 3. $\int_{0}^{1} x^{4} \sqrt{1+x^{5}} d x \quad \mathrm{u}=1+\mathrm{x}^{5}$

